วิทยาศาสตร์ ดาราศาสตร์ ฟิสิกส์ เคมี ชีววิทยา >>
กัมมันตภาพรังสี
ชนิดและสมบัติของรังสี
หลังจากที่แบ็กเคอเรลพบรังสีได้ไม่นาน
รัทเทอร์ฟอร์ดได้ศึกษาเพิ่มเติมและแสดงให้เห็นว่า
รังสีที่ธาตุกัมมันตรังสีปล่อยออกมาจากเกลือโพแทสเซียมยูเรนิลซัลเฟตนั้นมี 2 ชนิด
ชนิดที่หนึ่งไม่สามารถเคลื่อนทะลุผ่านแผ่นอะลูมิเนียมบางๆ ได้ เรียกว่า รังสีแอลฟา
ชนิดที่สองมีอำนาจทะลุผ่านสูงกว่าชนิดแรก เรียกว่า รังสีบีตา
เวลาต่อมานักฟิสิกส์ชาวฝรั่งเศสชื่อ วิลลาร์ด ได้แสดงให้เห็นว่า
ยังมีรังสีอีกชนิดหนึ่งที่เกิดจากเกลือยูเรเนียม
รังสีชนิดนั้นมีอำนาจทะลุผ่านสูงมากกว่า 2 ชนิดแรก เรียกว่า รังสีแกมมา
โดยในตารางจะแสดงให้เห็นอำนาจทะลุผ่านของรังสีทั้งสามชนิด
ความหนาของอะลูมิเนียมในตาราคือ ความหนาที่กั้นรังสีทั้งสามาชนิดจนเหลือครึ่งหนึ่ง
รังสี |
ความหนาของอะลูมิเนียม(cm) |
แอลฟา |
0.0005 |
รังสีแอลฟา
เป็นนิวเคลียสของอะตอมฮีเลียม มีโปรตอนและนิวตรอนอย่างละ 2 อนุภาค มีประจุไฟฟ้า
+2 มีเลขมวล 4 มีอำนาจทะทะลวงต่ำมาก
กระดาษเพียงแผ่นเดียวหรือสองแผ่นก็สามารถกั้นได้
ในสนามไฟฟ้ารังสีแอลฟาเบนเข้าหาขั้วลบ สามารถวิ่งผ่านอากาศได้ระยะทางเพียง 3-5 cm
เพราะเมื่อรังสีแอลฟาผ่านสาร สามารถทำให้สารเกิดการแตกตัวเป็นไอออนได้ดี
จึงทำให้เสียพลังงานอย่างรวดเร็ว
รังสีบีตา
คือ อนุภาคที่มีสมบัติเหมือนอิเล็กตรอน กล่าวคือ มีประจุไฟฟ้า -1
มีมวลเท่ากับมวลของอิเล็กตรอน มีพลังงานสูง ในสนามไฟฟ้ารังสีบีตาเบนเข้าหาขั้วบวก
มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า สามารถผ่านแผ่นโลหะบางๆ เช่น
แผ่นตะกั่วหนา 1 mm แผ่นอะลูมิเนียมหนา 5 mm มีความเร็วใกล้เคียงความเร็วแสง
และมีอำนาจในการไอออไนซ์น้อยกว่ารังสีแอลฟา
รังสีแกมมา
คือ คลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก ไม่มีประจุและไม่มีมวล
ไม่เบียงเบนในสนามไฟฟ้า มีอำนาจทะลุทะลวงสูงสุด
สามารถทะลุผ่านแผ่นไม้โลหะและเนื้อเยื่อได้
แต่ถูกกั้นได้โดยคอนกรีตหรือแผ่นตะกั่วหนา โดยสามารถทะลุผ่านแผ่นตะกั่วหนา 8 mm
หรือผ่านแผ่นคอนกรีตหนาๆ ได้ มีอำนาจในการไอออไนซ์น้อยมาก
สรุปสมบัติของรังสีทั้งสามได้ดังนี้
ความสามารถในการทำให้เกิดการแตกตัวเป็นไอออน
รังสีแอลฟา บีตา
และแกมมา
เป็นรังสีที่มีสมบัติทำให้สารหรือตัวกลางที่มันเคลื่อนที่ผ่านแตกตัวเป็นไอออนได้
รูปแสดงให้เห็นกระบวนการแตกตัวเป็นไอออน
สมมติรังสีบีตาซึ่งเป็นอนุภาคมีประจุลบเคลื่อนที่เข้าไปในสารชนิดหนึ่ง
มันมีโอกาศที่จะเคลื่อนที่เข้าไปชนอะตอมของสาร เนื่องจากรังสีบีตามีพลังงานสูงมาก
จึงสามารถชนอิเล็กตรอนของอะตอมของสารให้หลุดออกมาเป็นอิเล็กตรอนอิสระ
ขณะเดียวกันอะตอมตัวที่ถูกชนซึ่งเสียอิเล็กตรอนไปก็จะแสดงภาวะประจุบวก เรียกว่า
ไอออนบวก ทั้งหมดนี้คือกระบวนการที่รังสีทำให้สารหรือตัวกลางแตกตัวเป็นไอออน
เมื่อปล่อยให้รังสีแอลฟา บีตา และแกมมา เคลื่อนที่ผ่านไปในสาร เช่น ในอากาศ
พบว่ารังสีแอลฟาเคลื่อนที่ได้ระยะทางน้อยที่สุด
และรังสีแกมมาสามารถเคลื่อนที่ไปได้ไกลที่สุดดังรูป
แสดงว่ารังสีแอลฟาสามารถทำให้ตัวกลางที่มันเคลื่อนที่ผ่านไปแตกตัวเป็นไอออนได้ดีที่สุด
จึงสูญเสียพลังงานให้ตัวกลางอย่างรวดเร็ว
ทำให้เคลื่อนที่ผ่านไปในตัวกลางได้ไม่มากนัก ส่วนรังสีบีตาและแกมมา
มีความสามารถทำให้ตัวกลางแตกตัวเป็นไอออนได้ดีรองลงมาตามลำดับ
อำนาจทะลุผ่าน
จากที่ได้พิจารณามาแล้วในเรื่องความสามารถในการทำให้เกิดการแตกตัว
เราทราบว่ารังสีแอลฟาทำให้ตัวกลางที่มันเคลื่อนที่ผ่านแตกตัวเป็นไอออนได้มากที่สุด
รองลงมาคือรังสีบีตาและแกมมาตามลำดับ
เมื่อทดลองให้รังสีทั้งสามชนิดเคลื่อนที่ผ่านไปในตัวกลางต่างๆ เช่น กระดาษ
อะลูมิเนียม ตะกั่ว เป็นต้น จะเห็นว่ารังสีแอลฟาไม่สามารถเคลื่อนที่ผ่านแผ่นกระดาษ
ส่วนรังสีบีตาสามารถเคลื่อนที่ผ่านแผ่นกระดาษได้
แต่ไม่สามารถเคลื่อนที่ผ่านแผ่นอะลูมิเนียม
สำหรับรังสีแกมมาสามารถทะลุผ่านแผ่นกระดาษและแผ่นอะลูมิเนียมได้
แต่ไม่สามารถเคลื่อนที่ผ่านแผ่นตะกั่ว แสดงว่ารังสีแกมมามีอำนาจทะลุผ่านสูงที่สุด
รองลงมาคือรังสีบีตาและแอลฟาตามลำดับ
การเบนในสนามแม่เหล็ก
ผลของสนามไฟฟ้าต่อรังสีทั้ง 3 ชนิด
ตามรูป ธาตุกัมมันตรังสีอยู่ในแผ่นตะกั่ว ซึ่งมีรูปเปิดให้รังสีที่เกิดจากธาตุยูเรเนียมเคลื่อนที่ออกมาได้ บริเวณด้านนอกของแผ่นตะกั่วตรงปากรูของแผ่นตะกั่วมีสนามแม่เหล็กสม่ำเสมอ สมมติว่ามีรังสีสามชนิดถูกปล่อยออกมาจากธาตุยูเรเนียม และเคลื่อนที่เข้าสู่บริเวณที่มีสนามแม่เหล็ก จะพบว่า
- รังสีแอลฟา เคลื่อนที่โค้งลงมาเล็กน้อย
- รังสีบีตา เคลื่อนที่โค้งขึ้นไปเล็กน้อย
- รังสีแกมมา เคลื่อนที่ตรงออกไปโดยไม่มีการเบี่ยงเบน
จากลักษณธการตอบสนองต่อสนามแม่เหล็กของรังสีทั้งสามชนิด จึงสรุปได้ว่า
- รังสีแอลฟา เป็นอนุภาคขนาดเล็ก มีประจุบวก
- รังสีบีตา เป็นอนุภาคขนาดเล็ก มีประจุลบ และมีมวลน้อยกว่าแอลฟา
- รังสีแกมมา เป็นคลื่อนแม่เหล็กไฟฟ้าไม่มีประจุ
สรุปสมบัติของรังสี
การสลายกัมมันตรังสี
ได้กล่าวไปแล้วว่า
นิวเคลียสไม่เสถียรมีสาเหตุมาจากสัดส่วนระหว่างจำนวนโปรตอน
และจำนวนนิวตรอนในนิวเคลียสไม่เหมาะสม
ทำให้นิวเคลียสไม่เสถียรต้องเปลี่ยนสภาพนิวเคลียสเข้าสู่สภาพนิวเคลียสเสถียร
ด้วยการปล่อยรังสีแอลฟาหรือรังสีบีตาออกมา กระบวนการที่เกิดขึ้นนี้เรียกว่า
การสลายกัมมันตรังสี โดยเมื่อธาตุกัมมันตรังสีแผ่รังสีออกมา
อาจสลายตัวเป็นธาตุใหม่หรือยังเป็นธาตุเดิมก็ได้
ขึ้นอยู่กับชนิดของรังสีที่แผ่ออกมา พิจารณาได้ดังนี้
การสลายให้อนุภาคแอลฟา
นิวเคลียสของธาตุไม่เสถียรที่มีจำนวนโปรตอนในนิวเคลียสมากเกินไป
จะสลายด้วยการปล่อยอนุภาคแอลฟาซึ่งมีประจุบวกออกมา
และจะมีการเปลี่ยนแปลงภายในนิวเคลียส โดยมีเลขมวลลดลง 4 และเลขอะตอมลดลง 2
ทำให้ได้นิวเคลียสของธาตุใหม่
การสลายตัวและการแผ่รังสีแอลฟาส่วนใหญ่เกิดกับนิวเคลียสที่มีเลขอะตอมมากกว่า 82
ที่มีจำนวนนิวตรอนและโปรตอนไม่เหมาะสม เช่น Ra-226 สลายด้วยการปล่อยอนุภาคแอลฟา
แล้วกลายเป็น Ra-222 นิวเคลียส Ra-226 จะเรียกว่า นิวเคลียสตั้งต้น และนิวเคลียส
Ra-222 เรียกว่า นิวเคลียสลูก โดยนิวเคลียสลูกและอนุภาคแอลฟารวมเรียกว่า
ผลผลิตการสลาย การสลายของ Ra-226 เขียนแทนด้วยสมการ
การสลายให้อนุภาคบีตา
นิวเคลียสของธาตุไม่เสถียรที่มีจำนวนโปรตอนน้อยเกินไป
จะสลายด้วยการปล่อยอนุภาคบีตาซึ่งมีประจุลบออกมา เช่น C-14
สลายตัวด้วยการปล่อยอนุภาคบีตาแล้วกลายเป็น N-14 กรณีนี้ C-14 คือนิวเคลียสตั้งต้น
และ N-14 คือนิวเคลียสลูก โดย N-14 และอนุภาคบีตารวมเรียกว่า ผลผลิตการสลาย
เขียนแทนด้วยสมการ
การสลายให้รังสีแกมมา
รังสีแกมมาที่แผ่ออกมาเกิดจากการเปลี่ยนระดับพลังงานของนิวเคลียสจากภาวะที่ถูกกระตุ้น
ไปสู่สถานะพื้น
ที่มีระดับพลังงานต่ำกว่าโดยการแผ่รังสีแกมมาซึ่งเป็นคลื่นแม่เหล็กไฟฟ้าออกมา
พบว่ารังสีแกมมามักเกิดตามหลังการสลายให้อนุภาคแอลฟาหรืออนุภาคบีตาเสมอ เช่น Pb-214
สลายด้วยการปล่อยอนุภาคบีตาแล้วกลายเป็น Bi-214 พบว่า Bi-214
ที่เกิดขึ้นอยู่ในสภาวะกระตุ้นแล้ว Bi-214
จะลดระดับพลังงานสู่สภาวะปกติและปล่อยรังสีแกมมาออกมา
วิธีตรวจสอบการแผ่รังสีของสาร
ถ้าต้องการตรวจสอบว่าสารใดมีการแผ่รังสีหรือตรวจสอบว่าธาตุใดเป็นธาตุกัมมันตรังสี
สามารถตรวจสอบได้หลายวิธีดังนี้
- ใช้ฟิล์มถ่ายรูปหุ้มสารที่ต้องการตรวจสอบในที่มืด แล้วนำฟิล์มไปล้าง ถ้าเกิดสีดำบนแผ่นฟิล์มแสดงว่าสารนั้นมีการแผ่รังสี
- ใช้สารที่เรืองแสงได้เมื่อรังสีตกกระทบ เช่น ZnS มาวางไว้ใกล้ๆ สารที่ต้องการตรวจสอบ ถ้ามีแสงเรืองเกิดขึ้น แสดงว่าสารนั้นมีการแผ่รังสี
- ใช้เครื่องมือไกเกอร์มูลเลอร์เคาน์เตอร์ตรวจสอบ วิธีนี้ดีกว่า 2 วิธีแรก เพราะ 2 วิธีแรกไม่สามารถบอกปริมาณรังสีได้แต่วิธีนี้บอกได้ เครื่องไกเกอร์มูลเลอร์เคาน์เตอร์ประกอบด้วยหลอดทรงกระบอกที่ทำด้วยวัสดุตัวนำไฟฟ้า ภายในหลอดบรรจุก๊าซอาร์กอนที่มีความดันต่ำ ตรงกลางหลอดมีแท่งโลหะทำหน้าที่เป็นขั้วบวก ส่วนผนังหลอดเป็นขั้วลบ ขั้วทั้งสองจะต่อไปยังเครื่องกำเนิดไฟฟ้าเมื่อทำการวัดรังสี
- ใช้เครื่องวัดรังสีห้องหมอก (Cloud Chamber) เครื่องมือนี้ใช้ตรวจสอบรังสีโดยอาศัยหลักที่ว่า เมื่อรังสีผ่านไปในอากาศที่อิ่มตัวด้วยไอน้ำ รังสีจะไปทำให้ก๊าซเกิดการแตกตัวเป็นไอออนขึ้นตอลดทางที่รังสีผ่าน และไอน้ำที่อิ่มตัวจะเกิดการควบแน่นรอบๆ ไอออนเหล่านั้น ทำให้เกิดเป็นทางขาวๆ (เส้นหมอก) ตามแนวทางที่รังสีผ่านไป
ประโยชน์และโทษของกัมมันตภาพรังสี
ประโยชน์ของธาตุกัมมันตรังสี
1. ด้านธรณีวิทยา มีการใช้ C-14 คำนวณหาอายุของวัตถุโบราณ
หรืออายุของซากดึกดำบรรพ์ซึ่งหาได้ดังนี้ ในบรรยากาศมี C-14 ซึ่งเกิดจากไนโตรเจน
รวมตัวกับนิวตรอนจากรังสีคอสมิกจนเกิดปฏิกิริยา แล้ว C-14
ที่เกิดขึ้นจะทำปฏิกิริยากับก๊าซออกซิเจน แล้วผ่านกระบวนการสังเคราะห์แสงของพืช
และสัตว์กินพืช คนกินสัตว์และพืช ในขณะที่พืชหรือสัตว์ยังมีชีวิตอยู่ C-14
จะถูกรับเข้าไปและขับออกตลอดเวลา เมื่อสิ่งมีชีวิตตายลง การรับ C-14
ก็จะสิ้นสุดลงและมีการสลายตัวทำให้ปริมาณลดลงเรื่อยๆ ตามครึ่งชีวิตของ C-14
ซึ่งเท่ากับ 5730 ปี
ดังนั้น ถ้าทราบอัตราการสลายตัวของ C-14 ในขณะที่ยังมีชีวิตอยู่และทราบอัตราการสลายตัวในขณะที่ต้องการคำนวณอายุวัตถุนั้น ก็สามารถทำนายอายุได้ เช่น ซากสัตว์โบราณชนิดหนึ่งมีอัตราการสลายตัวของ C-14 ลดลงไปครึ่งหนึ่งจากของเดิมขณะที่ยังมีชีวิตอยู่ เนื่องจาก C-14 มีครึ่งขีวิต 5730 ปี จึงอาจสรุปได้ว่าซากสัตว์โบราณชนิดนั้นมีอายุประมาณ 5730 ปี
2. ด้านการแพทย์ ใช้รักษาโรคมะเร็ง ในการรักษาโรคมะเร็งบางชนิด
กระทำได้โดยการฉายรังสีแกมมาที่ได้จาก โคบอลต์-60 เข้าไปทำลายเซลล์มะเร็ง
ผู้ป่วยที่เป็นมะเร็งในระยะแรกสามารถรักษาให้หายขาดได้ แล้วยังใช้โซเดียม-24
ที่อยู่ในรูปของ NaCl ฉีดเข้าไปในเส้นเลือด เพื่อตรวจการไหลเวียนของโลหิต โดย
โซเดียม-24 จะสลายให้รังสีบีตาซึ่งสามารถตรวจวัดได้
และสามารถบอกได้ว่ามีการตีบตันของเส้นเลือดหรือไม่
3. ด้านเกษตรกรรม
มีการใช้ธาตุกัมมันตรังสีติดตามระยะเวลาการหมุนเวียนแร่ธาตุในพืช
โดยเริ่มต้นจากการดูดซึมที่รากจนกระทั่งถึงการคายออกที่ใบ
หรือใช้ศึกษาความต้องการแร่ธาตุของพืช
4.
ด้านอุตสาหกรรม ในอุตสาหกรรมการผลิตแผ่นโลหะ
จะใช้ประโยชน์จากกัมมันตภาพรังสีในการควบคุมการรีดแผ่นโลหะ
เพื่อให้ได้ความหนาสม่ำเสมอตลอดแผ่น
โดยใช้รังสีบีตายิงผ่านแนวตั้งฉากกับแผ่นโลหะที่รีดแล้ว
แล้ววัดปริมาณรังสีที่ทะลุผ่านแผ่นโลหะออกมาด้วยเครื่องวัดรังสี
ถ้าความหนาของแผ่นโลหะที่รีดแล้วผิดไปจากความหนาที่ตั้งไว้
เครื่องวัดรังสีจะส่งสัญญาณไปควบคุมความหนา โดยสั่งให้มอเตอร์กดหรือผ่อนลูกกลิ้ง
เพื่อให้ได้ความหนาตามต้องการ
ในอุตสาหกรรมการผลิตถังแก๊ส อุสสาหกรรมก่อสร้าง การเชื่อมต่อท่อส่งน้ำมันหรือแก๊สจำเป็นต้องตรวจสอบความเรียบร้อยในการเชื่อต่อโลหะ เพื่อต้องการดูว่าการเชื่อมต่อนั้นเหนียวแน่นดีหรือไม่ วิธีการตรวจสอบทำได้โดยใช้รังสีแกมมายิงผ่านบริเวณการเชื่อมต่อ ซึ่งอีกด้านหนึ่งจะมีฟิล์มมารับรังสีแกมมาที่ทะลุผ่านออกมา ภาพการเชื่อมต่อที่ปรากฎบนฟิล์ม จะสามารถบอกได้ว่าการเชื่อมต่อนั้นเรียบร้อยหรือไม่
โทษของธาตุกัมมันตรังสี
เนื่องจากรังสีสามารถทำให้ตัวกลางที่มันเคลื่อนที่ผ่าน เกิดการแตกตัวเป็นไอออนได้
รังสีจึงมีอันตรายต่อมนุษย์ ผลของรังสีต่อมนุษย์สามารถแยกได้เป็น 2 ประเภทคือ
ผลทางพันธุกรรมและความป่วยไข้จากรังสี ผลทางพันธุกรรมจากรังสี
จะมีผลทำให้การสร้างเซลล์ใหม่ในร่างกายมนุษย์เกิดการกลายพันธุ์
โดยเฉพาะเซลล์สืบพันธุ์ ส่วนผลที่ทำให้เกิดความป่วยไข้จากรังสี
เนื่องจากเมื่ออวัยวะส่วนใดส่วนหนึ่งของร่างกายได้รับรังสี โมเลกุลของธาตุต่างๆ
ที่ประกอบเป็นเซลล์จะแตกตัว ทำให้เกิดอากาป่วยไข้ได้
หลักในการป้องกันอันตรายจากรังสีมีดังนี้
- ใช้เวลาเข้าใกล้บริเวณที่มีกัมมันตภาพรังสีให้น้อยที่สุด
- พยายามอยู่ให้ห่างจากกัมมันตภาพรังสีให้มากที่สุดเท่าที่จะทำได้
- ใช้ตะกั่ว คอนกรีต น้ำ หรือพาราฟิน เป็นเครื่องกำบังบริเวณที่มีการแผ่รังสี
ที่มา
http://61.19.145.7/student/science401/chem/chem11/main1.html